Multi-Objective Aerodynamic Optimization of the Streamlined Shape of High-Speed Trains Based on the Kriging Model

نویسندگان

  • Gang Xu
  • Xifeng Liang
  • Shuanbao Yao
  • Dawei Chen
  • Zhiwei Li
چکیده

Minimizing the aerodynamic drag and the lift of the train coach remains a key issue for high-speed trains. With the development of computing technology and computational fluid dynamics (CFD) in the engineering field, CFD has been successfully applied to the design process of high-speed trains. However, developing a new streamlined shape for high-speed trains with excellent aerodynamic performance requires huge computational costs. Furthermore, relationships between multiple design variables and the aerodynamic loads are seldom obtained. In the present study, the Kriging surrogate model is used to perform a multi-objective optimization of the streamlined shape of high-speed trains, where the drag and the lift of the train coach are the optimization objectives. To improve the prediction accuracy of the Kriging model, the cross-validation method is used to construct the optimal Kriging model. The optimization results show that the two objectives are efficiently optimized, indicating that the optimization strategy used in the present study can greatly improve the optimization efficiency and meet the engineering requirements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on Braking Panels in High Speed Trains Using CFD

With speed increasing in high-speed trains, due to limitations of other types of brakes, aerodynamic brake has become an important braking method. In this task to make better use of brake’s panel different configurations are examined and the best panel shape which provides the reasonable drag coefficient is introduced. The results of simulations are carried out with the computational fluid dyna...

متن کامل

Multi-Fidelity Multi-Objective Efficient Global Optimization Applied to Airfoil Design Problems

In this study, efficient global optimization (EGO) with a multi-fidelity hybrid surrogate model for multi-objective optimization is proposed to solve multi-objective real-world design problems. In the proposed approach, a design exploration is carried out assisted by surrogate models, which are constructed by adding a local deviation estimated by the kriging method and a global model approximat...

متن کامل

CFD Simulation of High-speed Trains: Train-induced Wind Conditions on Trackside Installations

Speed is the created air flow as well as slipstream effects as the trains move. These effects can have some level of impact on fuel and energy efficiency  of  the  train,  but  their  other  important  outcome  is  the emergence of turbulent flows at higher speeds which can cause aerodynamic  drag  forces  followed  by  noise  and  vibration.  Thus, slipstream effects have significant importanc...

متن کامل

Efficient Aerodynamic Optimization Using a Multiobjective Optimization Based Framework to Balance the Exploration and Exploitation

In many aerospace engineering design problems, objective function evaluations can be extremely computationally expensive, such as the optimal design of the aerodynamic shape of an airfoil using high-fidelity computational fluid dynamics (CFD) simulation. A widely used approach for dealing with expensive optimization is to use cheap global surrogate (approximation) models to substitute expensive...

متن کامل

Dynamic Cargo Trains Scheduling for Tackling Network Constraints and Costs Emanating from Tardiness and Earliness

This paper aims to develop a multi-objective model for scheduling cargo trains faced by the costs of tardiness and earliness, time limitations, queue priority and limited station lines. Based upon the Islamic Republic of Iran Railway Corporation (IRIRC) regulations, passenger trains enjoy priority over other trains for departure. Therefore, the timetable of cargo trains must be determined based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017